Soal dan pembahasan aturan sinus dan cosinus !
1. Soal dan pembahasan aturan sinus dan cosinus !
klo gak paham bisa bertanya
semogga membantu
2. Membahas tentang sinus, cosinus, dan tangen. Berikan contoh soal
1. Contoh soal sinus (sin)
- Sebuah segitiga memiliki sudut θ = 30° dan sisi yang bersebrangan dengan sudut tersebut memiliki panjang 5 cm. Sisi miring atau hipotenusa segitiga memiliki panjang 10 cm. Hitunglah nilai sin θ.
2. Contoh soal cosinus (cos)
- Sebuah segitiga memiliki sudut θ = 45° dan sisi yang bersebrangan dengan sudut tersebut memiliki panjang 6 cm. Sisi miring atau hipotenusa segitiga memiliki panjang 8 cm. Hitunglah nilai cos θ.
3. contoh soal tangen (Tan)
- Sebuah segitiga memiliki sudut θ = 60° dan sisi yang bersebrangan dengan sudut tersebut memiliki panjang 4 cm. Sisi yang sejajar dengan sudut tersebut memiliki panjang 3 cm. Hitunglah nilai tan θ.
3. contoh soal aturan sinus cosinus dan luas segitiga
Semoga membantu ya..
4. Soal aturan sinus beserta pembahasan
Suatu segitiga ABC memiliki panjang AC = 8 cm. Jika besar <BAC 45° dan <ABC 60°° , maka panjang BC = … cm.
Pembahasan :
BC = 8 / 1/2√3 × 1/2√2
= 8✓6 / 3
5. tulisan aturan sinus dan aturan cosinus
aturan sinus
[tex] \frac{a}{ \sin \alpha } = \frac{b}{ \sin \beta } = \frac{c}{ \sin \gamma } [/tex]
aturan cosinus
a² = b² + c² - 2bc. cos A
b² = a² + c² - 2ac. cos B
c² = a² + b² - 2ab. cos C
6. Tulislah rumus aturan sinus dan cosinus Serta berilah contohnya (masing2 1 contoh)
Jawaban:
tuh contoh nya klau aturannya maaf lagi males nulis
[tex]\boxed{\boxed{\bold{\bigstar Aturan\:Sinus\:dan\:Cosinus \bigstar}}}[/tex]
Aturan Sinus adalah aturan yang menyatakan hubungan ketiga sudut dan sisi dengan Sinus :
(Contoh pada gambar)
[tex]\frac{a}{Sin\: A} =\frac{b}{Sin\: B} =\frac{c}{Sin\: C}[/tex]
Aturan Cosinus adalah aturan untuk mencari salah satu sisi dengan sisi dan sudut :
Rumus Aturan Cosinus adalah
a² = b² + c² - (2bc x cos A)
b² = a² + c² - (2ac x cos B)
c² = a² + b² - (2ab x cos C)
#KucingOren7. buat dua soal dan jawabannya dari pembahasan aturan cosinus
Soal
Jika panjang a,buku, dan c dalam segitiga abc berturut-turut adalah 8, 7cm, dan 4cm, maka besar sudut A adalah
pembahasan
Dik= a=8cm, b=7cm, c=4cm
Dit=A.....?
berdasarkan aturan cosinus
- cos A = (b2+c2-a2) /2bc
- cos A = (72+42-82) /2(7)(4)
- cos A = (49+16-64) /56
- cos A = 7/56
- cos A = 0,0017
- A = 89o
8. kakak" bisa ngasih contoh soal aturan sinus sama pembahasannya ga? plizz
Sebuah segitiga siku-siku sama kaki dengan panjang sisi miringnya 10 cm. Tentukan panjang sisi tegaknya!
[tex]\frac{sin 90}{10}=\frac{sin 45}{x}\\ x=\frac{sin 45 . 10}{sin 90}\\ x= \frac{\frac{1}{2} \sqrt{2} . 10 }{1} \\x=5\sqrt{2}[/tex]
9. soal aturan sinus cosinus .Mohon dibantu ya..... makasih.....
• sin a = 6/10 = 3/5
• cos a = 8/10 = 4/5
(dapat 8 dari tripel pythagoras 6,8,10)
• tan a = 6/8 = 3/4
• cosec a = 1/sin a = 5/3
• sec a = 1/cos a = 5/4
• cotan a = 1/tan a = 4/3
semoga membantu
10. [LATIHAN SOAL ATURAN SINUS DAN COSINUS] Mohon bantuannya kak! thanks
Penjelasan dengan langkah-langkah:
cos P = (PQ² + PR² - QR²)/(2 . PQ . PR)
= (5² + 6² - 7²)/(2 . 5 . 7)
= 12/70
= 6/35
11. [LATIHAN SOAL ATURAN SINUS DAN COSINUS] Mohon bantuannya kak! thanks
Penjelasan dengan langkah-langkah:
sudut A = 60°
sudut B = 45°
sudut C = 75°
AC = 10 cm
AB = AC/sudut B x sudut C
= 10/45° x 75°
= 16⅔ cm
L = ½ . AC . AB sin A
= ½ . 10 . 16⅔ . sin 60°
= 5 . 50/3 . ½√3
= (125√3)/3 cm
12. kapan aturan sinus atau cosinus digunakan
kalo ada segitiga sembarang terus diketahui besar sisi-sudut-sisi terus yg dicari itu panjang sisi yang diseberang sudut atau sudut dengan syarat semua sisi segitiga diketahui.
13. Aturan sinus dan cosinusSoal ada di foto"Mohon dibantu menjawab"
Jawaban:
Nomor 2
180° - (56° + 44°)
= 180° - 100°
= 80°
Aturan Sinus
a/sin a = c/sin c
a/sin 56 = 10/sin 80
a/0,82 = 10/0,98
0,98a = 8,2
a = 8,36 → sisi A
____________a/sin a = b/sin b
10/sin 48 = 8/sin b
10/0,74 = 8/sin b
10sin b = 5,92
sin b = 0,592
sudut b = 36°sudut a = 48°sudut c = 180° - (36° + 48°)
= 180° - 84°
= 96°
a/sin a = c/sin c
10/sin 48 = c/sin 96
10/0,74 = c/0,99
0,74c = 9,9
c = 13,37 [ Panjang C ]
14. aturan sinus cosinus luar
Jawaban:
1.d
2.e
3.D
Penjelasan dengan langkah-langkah:
1.mengunakan Aturan cosinus
x²=4²+3²-2.4.3cos∅
x²=16+9-24.cos60°
x²=25-24.1/2
x²=25-12
x²=13
x=√13.
2.mengunakan aturan sinus
x/sin45=6/sin30°
x/1/2√2=6/1/2
x•1/2=6•1/2√2
x=3√2/1/2
x=6√2
3.mengunakan aturan sinus.
Bc/sin a=AC/sin B
4/1/2=6/sin b
8=6/sin B
SinB=6/8=3/4=de/mi
samping =√4²-3²=√16-9=√7
COS b=Sa/mi=√7/4=1/4√7
15. tolong kasih contoh soal sinus dan cosinus
*Cosinus
Dalam segitiga ABC diketahui panjang sisi a = 7 cm, b = 8 cm, dan c = 9cm. sudut di hadapan sisi terpendek adalah ....
A. 38,2o
B. 40,2o
C. 48,2o
D. 49,4o
E. 51,2o
Pembahasan :
Dik : a = 7 cm, b = 8 cm, dan c = 9cm
Dit : A = ...?
Berdasarkan aturan cosinus:
[tex] \cos(A) = ( {b}^{2} + {c}^{2} - {a}^{2})/2bc \\ \cos(A) = ( {8}^{2} + {9}^{2} + {7}^{2}/2(8)(9) \\ \cos(A) = (64 + 81 - 49) /144 \\ \cos(A) = 96/144 \\ \cos(A) = 0.666 \\ A = 48. {2}^{o} [/tex]
Jadi, besar sudut di hadapan sisi terpendek adalah 48,2o.
Jawaban : C
*Sinus
Dalam segitiga ABC, diketahui panjang sisi b = 6 cm. Jika besar sudut A = 28o dan besar sudut B = 72o, maka panjang sisi di hadapan sudut A adalah ....
A. 2,9 cm
B. 3,4 cm
C. 3,6 cm
D. 4,6 cm
E. 6,0 cm
Pembahasan :
Dik : A = 28o, B = 72o, b = 6 cm
Dit : a = ... ?
Berdasarkan aturan sinus:
[tex] \frac{a}{ \sin(A) } = \frac{b}{sin B} \\ \frac{a}{ \sin( {28}^{o} ) } = \frac{b}{ \sin( {72}^{o} ) } \\ \frac{a}{0.469} = \frac{6}{0.951} \\ a= 2.816/0.951 \\ a =2.9 \: cm[/tex]
Jawaban : A
16. bagaimana aturan sinus dan cosinus pada segitiga ?
Aturan Sinus, Aturan Cosinus,
[1] Aturan Sinus
Sin A / a = Sin B / b = Sin C / c
Dapat digunakan saat mencari salah satu sisi segitiga yang diketahui kedua sudutnya dan salah satu sisinya
[2] Aturan Cosinus
a^2 = b^2 + c^2 - 2bc cos A
b^2 = a^2 + c^2 - 2ac Cos B
c^2 = a^2 + b^2 - 2ab Cos C
Dapat digunakan untuk mencari sisi salah satu segitiga yang diketahui kedua sisinya dan sudut sisi yang dicari
-----------------------------------------------------------------------------------------------------------------
Kelas : X
Mata Pelajaran : Matematika
Kategori : Bab 6 - Trigonometri Dasar
Kata Kunci : Aturan SInus, COsinus, Luas Segitiga
Kode Kategorisasi : 10.2.6 [Kelas 10 Matematika Bab 6 - Trigonometri Dasar] {KTSP]
Soal seperti ini dapat dilihat di
brainly.co.id/tugas/99454
brainly.co.id/tugas/6383084
#backtoschoolcampaign
17. jelaskan mengenai persamaan trigonometri untuk sinus, cosinus , dan tangen . serta berikan contoh soal dan pembahasan !
Jawaban:
Persamaan trigonometri memuat fungsi trigonometri dari suatu sudut yang belum diketahui. Nah, terdapat tiga persamaan dalam persamaan trigonometri sederhana.
Persamaan trigonometri sederhana adalah persamaan yang mengandung perbandingan trigonometri. Menyelesaikan persamaan ini dengan cara mencari seluruh nilai sudut-sudut x, sehingga persamaan tersebut bernilai benar untuk daerah asal tertentu. Persamaan trigonometri sederhana terdiri dari persamaan untuk sinus, cosinus, dan tangen. Pembahasan materi persamaan trigonometri sederhana dibatasi pada penyelesaian yang berada pada rentang 0o sampai dengan 360o atau 0 sampai dengan 2π.
18. menerapkan aturan sinus dan cosinussoal di lampiran
Penjelasan dengan langkah-langkah:
1)
b = a x sin @/sin ß
b = 12 x sin 30°/sin 120°
b = 12 x ½/½√3
b = 12/√3
b = (12/3)√3
b = 4√3 cm2)
AB/sin C = AC/sin B
AB = 6 sin 45°/sin 60°
AB = 6 x ½√2/½√3
AB = 6√2/√3
AB = (6/3)√2√3
AB = 2√6 cm3)
AB = 12 sin 45°/sin 30°
AB = 12(½√2)/½
AB = 12√2 cm19. contoh soal penjumlahan sinus dan cosinus
sinus 30 + cosinus 60
=2/3 akar 3 + 2/3 akar 3
=4/3 akar 6
kayak gitu apa
maaf kalau salah
20. Apa perbedaan aturan sinus dengan aturan cosinus pada permasalahan
intinya aturan sinus itu dipakai jika ada salah satu sisi yang berhadapan dengan sudut θ ,kalau aturan cosinus itu dipakai jika tidak ada sisi yang berhadapan dengan susut θ
21. jelaskan aturan sinus dan cosinus
aturan sinus
a/sin A=b/sin B
aturan cosinus
a²=b²+c²-2bc.cos@
SEMANGAT BELAJAR SEMOGA MEMBANTU.
Aturan sinus memperlihatkan perbandingan panjang sisi dengan sinus sudut yang berhadapan dengan sisi tersebut.
Aturan cosinus adalah sebuah aturan yang diturunkan berdasarkan hubungan antara panjang sisi-sisi dalam segitiga dengan nilai cosinus salah satu sudut pada segitiga tersebut
22. Aturan sinus,cosinus dan luas segitiga
Aturan Sinus, Aturan Cosinus, Luas segitiga ?
[1] Aturan Sinus
Sin A / a = Sin B / b = Sin C / c
Dapat digunakan saat mencari salah satu sisi segitiga yang diketahui kedua sudutnya dan salah satu sisinya
[2] Aturan Cosinus
a^2 = b^2 + c^2 - 2bc cos A
b^2 = a^2 + c^2 - 2ac Cos B
c^2 = a^2 + b^2 - 2ab Cos C
Dapat digunakan untuk mencari sisi salah satu segitiga yang diketahui kedua sisinya dan sudut sisi yang dicari
-----------------------------------------------------------------------------------------------------------------
Kelas : X
Mata Pelajaran : Matematika
Kategori : Bab 6 - Trigonometri Dasar
Kata Kunci : Aturan SInus, COsinus, Luas Segitiga
Kode Kategorisasi : 10.2.6 [Kelas 10 Matematika Bab 6 - Trigonometri Dasar] {KTSP]
Soal seperti ini dapat dilihat di
brainly.co.id/tugas/99454
brainly.co.id/tugas/6383084
#backtoschoolcampaign23. Aturan sinus dan cosinus
Jawaban:
Aturan Sinus dan Cosinus. Sebuah, segitiga terdiri dari 3 sisi dan 3 sudut, dengan jumlah ketiga sudut adalah 180°. Untuk segitiga siku-siku, Hanya dibutuhkan 1 sisi dan 1 sudut (tidak termasuk sudut siku-siku) ataupun 2 sisi diketahui
semoga membantu
Jawaban:
Sinus
Aturan sinus adalah perbandingan panjang sisi sebuah segitiga dengan sinus sudut yang menghadapnya memiliki nilai yang sama.
Segitiga
Keterangan
A = besar sudut dihadapan sisi a
a = panjang sisi a
B = besar sudut dihadapan sisi b
b = panjang sisi b
C = besar sudut dihadapan sisi c
c = panjang sisi c
AP ┴ BC
BQ ┴ AC
CR ┴ AB
Pada segitiga ACR
Sin A = CR/b maka CR = b sin A …(1)
Pada segitiga BCR
Sin B = CR/a maka CR = a sin B …. (2)
Pada segitiga ABP
Sin B = AP/c maka AP = c sin B … (3)
Pada segitiga APC
Sin C = AP/b maka AP = b sin C …(4)
Lalu, berdasarkan persamaan (1) dan (2) akan didapatkan:
CR = b sin A , dan CR = a sin B maka a/sin A = b/sin B …(5)
Berdasarkan persamaan (3) dan (4) didapat
AP = c sin B , dan AP = b sin C maka b/sin B= C/sin C…(6)
Kemudian, berdasarkan persamaan (5) dan (6) diperoleh
a/sin A = b/sin B = c/sin C
Persamaan ini yang Akan disebut sebagai aturan sinus.
Cosinus
Aturan cosinus akan menjelaskan hubungan antara kuadrat panjang sisi dengan nilai cosinus dari salah satu sudut pada segitiga.
Segitiga
Keterangan
A = besar sudut dihadapan sisi a
a = panjang sisi a
B = besar sudut dihadapan sisi b
b = panjang sisi b
C = besar sudut dihadapan sisi c
c = panjang sisi c
AP ┴ BC
BQ ┴ AC
CR ┴ AB
Perhatikan segitiga BCR
Sin B = CR/a maka CR = a sin B
Cos B = BR/a maka BR = a cos B
AR = AB – BR = c – a cos B
Perhatikan segitiga ACR
b2 = AR2 + CR2
b2 = (c – a cos B)2 + (a sin B)2
b2= c2 – 2ac cos B + a2 cos2 B + a2 sin2 B
b2 = c2 – 2ac cos B + a2 (cos2 B + sin2 B)
b2= c2 + a2 – 2ac cos B
Menggunakan analogi yang sama, kemudian diperoleh aturan cosinus untuk segitiga ABC sebagai berikut
a2 = c2 + b2 – 2bc cos A
b2 = a2+ c2 – 2ac cos B
c2 = a2+ b2 – 2ab cos C
Nah itu dia aturan sinus dan cosinus yang bisa kamu ikuti untuk mengerjakan soal-soal mengenai trigonometri.
semoga membantu
24. tolong buatkan,contoh soal selisih dan jumlah sinus dan cosinus,dan juga pembahasannya, tpi contoh soalnya berupa cerpen
Pak rahman akan membuat atap berbentuk segitiga pada rumahnya, ia membentuk sudut pada titik A dengan ukuran 45° dan pada titik sudut C dengan ukuran sama, apabila pak rahman adalah seorang guru matematika yang kreatif, maka tentukan Sin A + sin C.
Sin a + sin c = 2.sin 1/2 (a+c). Cos1/2(a-c)
= 2.sin1/2.(90°). Cos1/2(0°)
=2.sin 45°. Cos0°
=2 . 1/2√2 . 1
=√2
25. soal aturan sinus dan cosinus, tolong dibantu, terimakasih:)
Jawab:
Penjelasan dengan langkah-langkah:
trigometri
segitiga
aturan cos
__
soal 4
Δ HIJ , h = 8, i = 12 , <J = 30°
panjang j = . .
aturan cosinus
j² = h²+i² - 2 hi cos J
j² = 8²+ 12² - 2 (8)(12) cos 30°
j² = 64 + 144 - 192 (¹/₂√3)
j² = 208 - 96√3
j² = 16(13- 6√3)
[tex]\sf j = \sqrt{16(13 + 6\sqrt3)}\sf\\\\\sf j = 4\sqrt{13 + 6\sqrt {3}}[/tex]
soal5
ΔXYZ, x= 10 , z = 16, <Y = 240
aturan cosinus
y² = x² + z² - 2 x z cos Y
y² = 10² + 16² - 2(10)(16) cos 240°
y² = 100 + 256 - 320 cos (180 +60)°
y² = 356 - 320 (- cos60°)
y² = 356 - 320 (- 1/2)
y² = 356 + 160
y² = 516
y = √516
y = 2√129
26. Aturan Sinus,Cosinus,Luas Segitiga
Penjelasan dengan langkah-langkah:
Aturan Cosinua
NO = √(MN² + MO² - 2 x MN x MO x cos M)
NO = √(8² + (6√2)² - 2 x 8 x 6√2 x cos 45°)
NO = √(64 + 72 - 96√2 x 1/2 √2)
NO = √(136 - 96)
NO = √(40)
NO = 2 √10 cm
Jawabannya D
Selamat Belajar
Jawaban:
2\/10 cm
Penjelasan dengan langkah-langkah:
penjelasan pada foto ,terimakasih...
27. Aturan sinus dan aturan cosinus berlaku pada
Jawaban:
aturan sinus
BC = 6 x sinus 450 sinus 300
BC = 6 x 12 akar 2 12
BC = 6 akar 2
Jadi diketahui bahwa panjang BC adalah 6 akar 2
Aturan cosinusnya adalah :
(akar7)2 = (1)2 + (2 akar 3)2 – 2 x 1 x 2 akar 3 x cos θ
7 = 1 + 12 – 4 akar 3 x cos θ
4 akar 3 x cos θ = 6
Cos θ = 64 akar 3
Cos θ = 12 akar 3
Θ = 30 derajad
28. aturan sinus cosinus dan tangen
Sin = depan/miring
Cos = samping/miring
Tan = depan/samping
29. contoh penerapan konsep aturan sinus dan cosinus dalam kehidupan sehari-hari
untuk mempersingkat waktu menghitung tinggi atau jarak suatu bangunan yang membutuhkan waktu lama apabila dihitung dengan cara manual
30. jelaskan aturan sinus cosinus!!
Penjelasan dengan langkah-langkah:
Aturan Sinus Cosinus merupakan aturan yang menjelaskan hubungan antara kuadrat panjang sisi dengan nilai cosinus dari salah satu sudut pada segitiga.
Semoga Bermanfaat
Jangan Lupa Jadikan Jawaban Tercerdas Terimakasih Ya31. soal aturan sinus cosinus.....mohon bantuannya....... makasih.....
L ABC = 1/2 × AB × AC × SIN 45°
= 1/2 × 6 × 4 × 1/2 AKAR 2
= 3 × 2 akar 2
= 6 akar 2
32. contoh soal sinus dan cosinus dan jawaban
Sebuah segitiga ABC memiliki tiga sisi yaitu a, b, dan c. Jika sudut A, B, dan C adalah tiga sudut yang berada di hadapan sisi a, b, dan c, maka aturan cosinus yang berlaku untuk segitiga tersebut adalah ....
A. a2 = b2 + c2 − 2ac cos A
B. b2 = a2 − c2 + 2ac cos B
C. b2 = a2 + c2 − 2ab cos B
D. c2 = a2 + b2 − 2ac cos C
E. a2 − b2 = c2 − 2bc cos A
Pembahasan :
Aturan cosinus merupakan aturan yang menunjukkan hubungan antara sisi-sisi segitiga dengan nilai cosinus salah satu sudutnya. Aturan ini diapat digunakan untuk menentukan panjang sisi atau besar sudut dalam segitiga.
Pada segitiga ABC berlaku aturan cosinus sebagai berikut:
a2 = b2 + c2 − 2bc cos Ab2 = a2 + c2 − 2ac cos Bc2 = a2 + b2 − 2ab cos C
Dari kelima opsi yang diberikan, opsi E adalah bentuk lain dari:
⇒ a2 = b2 + c2 − 2bc cos A
⇒ a2 − b2 = c2 − 2bc cos A
Jawaban : E
#supaya kita bisa
#88boim untk indonesia cemerlang
33. contoh penerapan konsep aturan sinus dan cosinus dalam kehidupan sehari-hari
Sinus = menghitung panjang sebuah kapal laut yang akan bersandar di pelabuhan dengan menggunakan sudut deviasi seorang pengawas di mercu suar yang ketika melihat bagian depan dan bagian belakang kapal tersebut
cosinus = menghitung panjang lintasan yang dilalui sebuah pesawat udara dari suatu kota ke kota lain dan arah penerbangannya.untuk mempersingkat waktu menghitung tinggi atau jarak suatu bangunan yang membutuhkan waktu lama apabila dihitung dengan cara manual
34. Tolong bantu soal trigonometri aturan sinus/cosinus ini
a = 6
b = 8
jadi
c = 10
terus aturan sin
a/sinA = c/sinC
6/(1/2) = 10/sinC
12sinC = 10
sinC = 5/6
cari anti sin dari 5/6
hehehe gitu intinya
35. Aturan sinus dan aturan cosinus berlaku pada​?
Penjelasan dengan langkah-langkah:
aturan sinus dipake ketika
- ditanya sisi diket 1 sisi 2 sudut
- ditanya sudut diket 2 sisi 1 sudut
aturan cosinus dipake ketika
- ditanya sudut diket ketiga sisi
- ditanya sisi diket 2 sisi 1 sudut
36. bab aturan sinus dan cosinus
Jawab:
[tex]\frac{\sqrt{6}}{2}[/tex]
Penjelasan dengan langkah-langkah:
Misalkan Malang, Kediri, dan Blitar berturut-turut berada di titik M, K, dan B.
Berdasarkan Aturan Sinus,
[tex]\frac{\overline{MB}}{\sin{60}^{\circ}}=\frac{\overline{BK}}{\sin{{45}^{\circ}}}[/tex]
[tex]\iff\frac{\overline{MB}}{\overline{BK}} =\frac{\sin{60}^{\circ}}{\sin{45}^{\circ}} =\frac{\sqrt{3}}{\sqrt{2}}=\frac{\sqrt{6}}{2}[/tex]
Misal [tex]v_A[/tex] dan [tex]v_B[/tex] berturut-turut adalah kecepatan Andi dan Budi. Misalkan pula [tex]t[/tex] adalah waktu yang ditempuh Andi dan Budi. Kemudian,
[tex]\frac{v_A}{v_B}=\frac{\frac{\overline{MB}}{t} }{\frac{\overline{BK}}{t} }=\frac{\overline{MB}}{\overline{BK}} = \frac{\sqrt{6}}{2} \iff\:v_A=\frac{\sqrt{6}}{2} \times v_B[/tex] .
37. contoh soal cerita tentang aturan sinus dan cosinus.tolong dibantu ya, trims
sebuah segitiga ABC dengan panjang AB=8cm,BC=13cm,AC=13cm,Z adalah sisi sudut yang terbentuk anatara sisi AB dan AC.maka nilai sin Z,dan tin Z adalah?
ITU ADALH SOAL COSINUS
38. Bagaimana kamu membedakan aturan sinus dan aturan cosinus?
Jawaban:
A. Aturan Sinus
Aturan ini selalu menjelaskan hubungan antara perbandingan panjang sisi yang berhadapan dengan sudut terhadap sinus sudut pada segitiga.
B. Aturan Cosinus
Aturan Cosinus merupakan aturan yang menjelaskan hubungan antara kuadrat panjang sisi dengan nilai cosinus dari salah satu sudut pada segitiga. Aturan cosinus dapat digunakan untuk menentukan unsur-unsur lain dalam suatu segitiga sembarang untuk dua kasus yaitu saat tiga sisi ketahui dan saat dua sisi dan sudut apitnya diketahui.
Penjelasan dengan langkah-langkah:
Aturan Sinus
menurut aturan sinus dalam setiap ABC , perbandingan panjang sisi dengan sinus sudut yang berhadapan dengan sisi tersebut yang mempunyai nilai yang sama
Aturan Cosinus
Aturan cosinus pada segitiga memperlihatkan hubungan antara kuadran panjang sisi dalam nilai cosinus pada salah satu sudutnya. Pada persamaan aruran Cosinus salah satu sudut tersebut diletakan disebelah kanan dan bersesuaian dengan sisi yang berada di sebelah kiri.
Detail jawabanMata pelajaran : Matematika
kelas : 10
materi : Trigonometri
kode soal : 2
kode kategorisasi :10.2.6
39. maka aturan sinus dan cosinus adalah
Jawab:
Aturan sinus = a/sin A = b/sin B = c/sin C
Aturan cosinus =
a^2 = c^2 + b^2– 2bc cos A
b^2 = a^2 + c^2 – 2ac cos B
c^2 = a^2 + b^2 – 2ab cos C
Penjelasan dengan langkah-langkah:
Aturan sinus isinya bahwa perbandingan panjang sisi sebuah segitiga dengan sinus sudut yang menghadapnya memiliki nilai yang sama.
Maka aturan sinus yang berlaku adalah :
a/sin A = b/sin B = c/sin C
Sedangkan aturan cosinus menjelaskan tentang hubungan antara kuadrat panjang sisi dengan nilai cosinus dari salah satu sudut pada segitiga.
a^2 = c^2 + b^2– 2bc cos A
b^2 = a^2 + c^2 – 2ac cos B
c^2 = a^2 + b^2 – 2ab cos C
40. [LATIHAN SOAL ATURAN SINUS DAN COSINUS] Mohon bantuannya kak! thx
Penjelasan dengan langkah-langkah:
sudut A = 60°
sudut B = 90°
sudut C = 30°
AB = 180
BC = AB/sudut C x sudut A
= 180/30° x 60°
= 360